Tomas Herben1, Jun-ichirou Suzuki 2 |
A simulation study of the effects of architectural constraints and resource translocation on population structure and competition in clonal plants |
1 Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Pruhonice, Czech Republic. 2 Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo,192-0397, Japan. |
|
Abstract. (1) Spatially explicit simulation of clonal plant growth is used to determine how ramet-level traits affect ramet density, spatial pattern of ramets and competitive ability of a clonal plant. The simulation model used combines elements of (i) an individual-based model of plant interactions, (ii) an architectural model of clonal plant growth, and (iii) a model of resource translocation within a set of physiologically integrated plant individuals. (2) The effects of two groups of parameters were studied: growth and resource acquisition parameters (resource accumulation, density-dependence of resource accumulation, resource translocation between ramets) and architectural rules (branching angle and probability of branching, internode length). The model was parameterized by values approximating those of clonally growing grasses as closely as possible. The basic parameter values were chosen from a short-turf grassland. Sensitivity analysis was carried out on relevant parameters around three basic points in the parameter space. Both single-species and two-species systems were studied. (3) It is shown that increasing resource acquisition and growth parameters increase ramet density, genet number and competitive ability. Translocation parameters and architectural parameters modify the effects of resource acquisition and growth, but their effect in single-species stands was smaller. (4) The simulations of species with fixed ramet sizes showed that ramet density in single-species stands cannot be used for predicting competitive ability. Increase in resource acquisition and growth parameters was correlated with an increase in equilibrium ramet density and competitive ability. Increasing branching angle, branching probability or internode length lead to an increased competitive ability, but did not affect equilibrium ramet density. Change of architectural parameters could therefore affect competitive ability independently of their effect on the final ramet density. (5) Spatial pattern both in single-species and two-species stands was also highly parameter-dependent. Changes in architectural parameters and in translocation usually lead to pronounced change in the spatial pattern; change in growth and resource acquisition parameters generally had little effect on spatial pattern. |
|
Keywords |
Architectural model, individual-based simulation model, spatial autocorrelation, competitive ability, resource acquisition, architectural rules, genet coexistence |
Evolutionary Ecology (2001) 15: 4-6 (in press). |